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Abstract: Long-term satellite climate data records of aerosol and cloud along with meteorological
reanalysis data have been used to study the aerosol effects on deep convective clouds (DCCs) over the
global oceans from a climatology perspective. Our focus is on identifying sensitive aerosol regimes
and active geolocations of the aerosol effects on DCCs by using statistical analyses on long-term
averaged aerosol and cloud variables. We found the aerosol effect tends to manifest relatively easily
on the long-term mean values of observed cloud microphysical variables (e.g., cloud particle size
and ice water amount) compared to observed cloud macrophysical variables (e.g., cloud cover and
cloud top height). An increase of aerosol loading tends to increase DCC particle size and ice water
amount in the tropical convergence zones but decrease them in the subtropical subsidence regions.
The aerosol effect on the cloud microphysical variables is also likely to manifest over the northwestern
Pacific Ocean and central and eastern subtropical Pacific Ocean. The aerosol effect manifested on
the microphysical cloud variables may also propagate to cloud cover but weakly to cloud top height
since the latter is more susceptible to the influence of cloud dynamical and thermodynamic processes.
Our results, based on the long-term averaged operational satellite observation, are valuable for the
evaluation and improvement of aerosol-cloud interactions in global climate models.

Keywords: aerosol optical thickness (AOT); deep convective cloud (DCC); aerosol-cloud interaction
(ACI); satellite observation

1. Introduction

Atmospheric aerosol particles originated from nature processes and anthropogenic
activities may act as cloud condensation nuclei (CCN) and ice nucleating particles (INPs),
which are critical for the formation and evolution of clouds and precipitation [1,2]. Deep
convective clouds (DCCs) play an important role in the hydrological and energy cycles
associated with atmospheric circulations as well as regional and local weather and cli-
mate systems [3,4]. Due to complicated dynamical, thermodynamic, and microphysical
processes involved in the formation and development of DCCs, the potential impacts of
globally increased anthropogenic aerosols since preindustrial time on DCCs are extremely
complex and widely debated, and is still the most actively studied subject of aerosol cloud
interactions (ACIs) [5–11].

Increased aerosol loadings may have the potential to invigorate or inhibit convective
cloud development depending on aerosol amount, size, and types, and meteorological
conditions. For example, aerosols may suppress warm rain processes in a DCC and allow
more cloud water droplets to be lifted higher in the atmosphere, where freezing of the
larger amount of cloud water droplets releases more latent heat and invigorates convection,
e.g., [12–14]. Some observational studies and model simulations also reported increased
cloud top height and cloud cover of DCCs with an increase in aerosol loading of various
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types, which suggests a microphysical invigoration process induced by reduced ice particle
size and fall velocity, e.g., [15–22].

On the other hand, enhanced aerosol radiative effect in a highly polluted scenario may
decrease the amount of sunlight reaching the surface and result in a reduction of the con-
vective available potential energy, which consequently suppresses deep convection [23,24].
Elevated atmospheric absorbing aerosols can warm and stabilize the lower troposphere,
which may produce an inhibition of convection and even a weakening of summer monsoon
systems in Asia [25–27]. The study based on satellite observation and cloud modeling by
Li et al. [28] also suggests INPs increase due to enhanced dust aerosol loading may lead to
a relatively warmer cloud top temperature of DCC for a given ice water path.

Due to the lack of global long-term observations of DCCs and aerosols, observational
and modeling studies of aerosol effects on DCCs in the literature are performed more
actively on regional and local spatial scales as well as on cloud and sub-cloud scales with
short temporal coverage, which is critical for identifying the mechanisms and processes
for the interactions of aerosols and DCCs. In the literature, the global long-term effects of
aerosols on DCCs are mainly based on global model simulations with limited validations
from a climatology perspective due to lack of global coherent long-term observations of
aerosols and DCCs. In this paper, we use nearly 40-years of global satellite cloud climate
data record (CDR) and aerosol optical thickness (AOT) CDR to study the aerosol effects on
DCCs from a global and long-term observational perspective. The objective is to identify
potential signatures or imprints of the aerosol effects on DCCs over the global oceans using
long-term averaged aerosol and cloud variables (or their climatology) from operational
satellite observations. The results will be beneficial for validating global long-term climate
model simulations on the interaction of aerosols and DCCs, which are still plagued with
large uncertainties in the treatment of aerosol-cloud interactions (ACIs) for DCCs. The
content of the paper is arranged as follows. Section 2 introduces the CDRs of aerosol and
cloud from global long-term operational satellite measurements and the meteorological
fields selected from the reanalysis of National Centers for Environmental Prediction (NCEP).
The approaches used in our analyses are described in Section 3. The results are presented
in Section 4. A discussion on the limitations of our current analyses is given in Section 5
and a summary and some conclusions are provided in the closing section.

2. Data

This study uses both operational satellite observations and meteorological reanalysis
data. They include (1) Version 4.0 of the Advanced Very High-Resolution Radiometer
(AVHRR) AOT CDR from the National Oceanic and Atmospheric Administration (NOAA)
Polar Operational Environmental Satellites (POES) and the European Meteorological Op-
erational satellites (MetOp), (2) Version 6.0 of NOAA AVHRR + High-resolution Infrared
Sounder (HIRS) Pathfinder Atmospheres-Extended (PATMOS-x) cloud CDR products, and
(3) the NCEP climate forecast system reanalysis (CFSR) product. They are described briefly
in the following subsections, respectively.

2.1. Satellite Data

Version 6.0 of AVHRR + HIRS PATMOS-x cloud CDR is a Level-2b product on
0.1◦ × 0.1◦ equal angle orbital grid [29,30], which is retrieved using the inter-calibrated
AVHRR global area coverage (GAC) radiance data collocated with the HIRS radiances
on the same satellite platforms of NOAA POES and the European Organization for the
Exploitation of Meteorological Satellites (EUMETSAT)/MetOp [31–33]. The inter-calibrated
and collocated AVHRR + HIRS GAC radiances are also cross-calibrated with more ad-
vanced National Aeronautics and Space Administration (NASA) Moderate Resolution
Imaging Spectroradiometer (MODIS) radiances [34–36]. The data can be downloaded
from NOAA CDR website (https://www.ncei.noaa.gov/products/climate-data-records/
avhrr-hirs-cloud-properties-patmos, accessed on 5 January 2022). Six cloud variables are
available and used in our analysis, which include cloud particle effective radius (CPER),
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cloud optical depth (COD), ice water path (IWP), cloud cover fraction (CCF), cloud top
height (CTH), and cloud top temperature (CTT). These variables are output together with
the inter- and cross-calibrated and collocated AVHRR + HIRS radiances along with selected
ancillary data (e.g., surface types) as the Level-2b daily CDR products, which allow other
CDRs to be derived and generated from the PATMOS-x CDR data for more applications
(such as the AOT CDR introduced below).

Six cloud types—warm water cloud, supercooled water cloud, thick ice cloud, cirrus
cloud, overshooting ice cloud (ice cloud with overshooting tower due to deep convection),
and overlapping ice cloud (thin cirrus above low cloud)—are identified using a compre-
hensive hierarchical algorithm and stored as cloud type flags in the PATMOS-x cloud
CDR products. Please refer to Pavolonis et al. [37] and Walther and Heidinger [33] for a
detailed description of how to identify cloud ice phase and related threshold values of the
decision trees in the comprehensive cloud-type detection algorithm. In the current study,
our focus is on DCCs which are determined in two steps. First, the orbital grids with the
last four cloud types (involving ice phase) among the six cloud types are selected. Then,
a filtering step with a criteria of CTT < 245 K, CTH > 6 km, and COD > 23 is applied to
all the orbital grids selected in the first step. This DCC filtering criteria is based on the
identification of DCCs from passive satellite observations in the literature, e.g., [38–41].
PATMOS-x cloud CDR data spans from 1979 to the present. Only the data after 1982 is
used in this study, because there are many missing observations in the first three years
(1979–1981) of collocated AVHRR + HIRS data records.

Version 4.0 of AVHRR AOT CDR from the NOAA POES and the EUMETSAT/MetOp
operational satellites is used in this study and it is available from the NOAA CDR web-
site (https://www.ncei.noaa.gov/products/climate-data-records/avhrr-aerosol-optical-
thickness, accessed on 1 January 2022), which is maintained and archived by the NOAA
National Centers for Environmental Information (NCEI). AVHRR AOT is derived over
the global ocean surface for λ1 = 0.63 µm and λ2 = 0.86 µm channels using a two-channel
AVHRR aerosol retrieval algorithm [42] on AVHRR clear-sky daytime reflectance. The clear-
sky reflectance is determined from the above Version 6.0 PATMOS-x AVHRR + HIRS all-sky
reflectance and cloud probability products [43]. The data time period spans from 1982 to
the present, and the spatial resolution is 0.1◦ × 0.1◦ on the equal-angle grid. AOTs derived
for 0.63 µm (τ1) and 0.86 µm (τ2) channels are used to calculate the aerosol Angström
exponent (α) as follows:

α = − ln(τ1/τ2)

ln(λ1/λ2)
(1)

The aerosol index (AIX) defined as AIX = τ1 × α, which is a better proxy for column
aerosol concentration than AOT [44–46], will be used in our analysis. Thirty-eight years
(1982–2019) of daily products of AVHRR aerosol index and PATMOS-x AVHRR + HIRS
cloud CDRs are averaged to obtain both monthly and long-term mean values and used in
our study.

2.2. Reanalysis Data

To support our analysis, meteorological fields that are relevant and important for
the formation and development of DCCs are also obtained and selected from the NCEP
CFSR monthly mean product (ftp://nomads.ncdc.noaa.gov/CFSR/HP_monthly_means/,
accessed on 5 January 2022) with a latitude and longitude resolution of 0.5◦ × 0.5◦. They
include surface convective available potential energy (CAPE) in J/kg, precipitable water of
atmospheric column (PW) in kg/m2, relative humidity (RH) in percentage in atmospheric
column (RHclm), at 850 mb pressure level (RH850), and at 2 m altitude (RH2m), vertical
velocity (ω) in Pa/s at 850 mb pressure level (ω850) and 0.995 sigma vertical coordinate
level (ωsig995), U and V components of horizontal wind vectors in m/s at 10 m altitude
(U10m and V10m), at 850 mb (U850 and V850), 700 mb (U700 and V700), and 400 mb (U400 and
V400) pressure levels, and atmospheric temperature in K at 850 mb pressure level (T850) and
at 2 m altitude (T2m). U and V components at 700 mb and 400 mb pressure levels are used to

https://www.ncei.noaa.gov/products/climate-data-records/avhrr-aerosol-optical-thickness
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compute the vertical shear of horizontal wind (VSHW) between the two pressure levels for
the middle troposphere using VSHW = [(U700 − U400)2 + (V700 − V400)2]1/2/(700 − 400).
The reasons for selecting these meteorological variables in our study will be provided
successively in the following analyses. NCEP CFSR was designed and executed as a global,
high-resolution, coupled atmosphere-ocean-land surface-sea ice system to provide the best
estimate of the state of these coupled domains over the period from 1979 to present [47].
The selected meteorological variables from CFSR monthly mean products are averaged
from 1982.1 to 2019.12 to obtain long-term mean values (or climatology). Both monthly and
long-term averaged values of these meteorological variables are interpolated into the same
spatial resolution (0.1◦ × 0.1◦) as the above satellite cloud and aerosol CDR products.

3. Analysis Approaches

We first examined the global distribution of long-term averaged AIX and six cloud
variables to identify regions with intensive DCCs and potential aerosol effect. The aerosol
effect on DCCs is also simply called the aerosol indirect effect (AIE) of DCCs hereafter. Then,
statistical relationships of cloud and meteorological variables with AIX were computed
and examined to define the sensitive regime of AIX for the AIE. For the tropical latitude
belt (named TRL hereafter) of 15◦ S–15◦ N, the northern middle latitude belt (NML) of
30◦ N–60◦ N, and the southern middle latitude belt (SML) of 30◦ S–60◦ S, where DCCs
appear more frequently (see Section 4.1 below), we performed further investigation to
determine if the variations of six cloud variables (CPER, IWP, COD, CCF, CTH, and CTT) in
the AIE sensitive regime of AIX are mainly due to the AIE or the covariance of meteorologi-
cal conditions. Specifically, we performed a multiple-variables linear regression (MVLR) for
the individual six cloud variables with AIX and fourteen selected meteorological variables
over five selected regions in TRL, NML, and SML. The five selected regions are listed in
Table 1. The first region is over the northwest Pacific Ocean (named NWPO hereafter) in
NML, the second region is over the tropical west Pacific Ocean (TWPO) in TRL, the third
region is over the southern Indian Ocean (SIO) in SML. DCCs appear most frequently in
these first three regions of NML, TRL, and SML, respectively (see Section 4.1 below), which
is the reason they were selected in our study. The fourth region is over the coastal oceans
of southeast China (named SEC) and the last region is over the middle subtropical Pacific
Ocean (MSPO). SEC and MSPO were selected due to interesting distribution features of
the cloud variables (see Section 4.1 below), which may contain the signatures of AIE as
presented in the following Section 4.1.

Table 1. Five rectangle regions selected for the analysis of multiple-variables linear regression and
their latitude and longitude bounds.

# Region Name (Acronym) Latitude Bounds Longitude Bounds

1 Middle Subtropical Pacific Ocean (MSPO) [10◦ N, 30◦ N] [150◦ W, 180◦ W]

2 Northwest Pacific Ocean (NWPO) [30◦ N, 60◦ N] [120◦ E, 180◦ E]

3 Southeast Coastal Oceans of China (SEC) [10◦ N, 30◦ N] [110◦ E, 140◦ E]

4 Southern Indian Ocean (SIO) [30◦ S, 60◦ S] [60◦ E, 120◦ E]

5 Tropical Western Pacific Ocean (TWPO) [15◦ S, 15◦ N] [120◦ E, 180◦ E]

Since aerosols may suppress or invigorate convective cloud development [8–10], we
first selected AIX as one of the variables used in the MVLR analysis. The availability of
surface CAPE, atmospheric moisture, and precipitable water along with the meteorological
conditions near the cloud base are critical for the development of wet convection [8,9]
so that CAPE, RHclm, PW, U850, V850, ω850, RH850, and T850 were selected from CFSR as
the meteorological variables used in the MVLR. Moreover, meteorological condition in
the subcloud layer (or near the surface), such as “cool pool”, can be important for the
development of a DCC from shallow convection [8,14,48]. Thus, RH2m, T2m, U10m, V10m,
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andωsig995 were also added to the list of meteorological variables used in our MVLR. Some
previous studies, e.g., [49–51] also indicated that tropospheric vertical wind shear is critical
in organizing mesoscale convective systems and determines whether aerosols suppress or
enhance convective strength. Therefore, we also included VSHW as a variable in the MVLR
analysis. The annual mean values of six cloud variables, AIX, and fourteen meteorological
variables were selected and used for the MVLR as expressed in Equation (2):

CV j, k
i = aj,k

0 + aj,k
1 xj,k

1,i + aj,k
2 xj,k

2,i + · · ·+ aj,k
15 xj,k

15,i (2)

where CV and index i (= 1, 2, . . . , 6) represent one of the six cloud variables (CPER, IWP,
COD, CCF, CTH, CTT). j (= 1, 2, . . . , 5) is one of the five regions (MSPO, NWPO, SEC, SIO,
TWPO) listed in Table 1. The logarithm values of the six cloud variables were used in the
MVLR to account for some of the nonlinearity in the linear regression. k is the index of year,
which changes from 1 (1982) to 38 (2019). x1, x2, . . . , x15 are fifteen selected aerosol and
meteorological variables (AIX, CAPE, PW, RHclm, RH850, RH2m, T850, T2m, U850, U10m, V850,
V10m, ω850, ωsig995, VSHW). a0 is the constant term and a1, a2, . . . , a15 are fifteen linear
regression parameters (or slopes).

At last, we tried to determine the sensitive (or active) regions of the aerosol effect on
DCCs over the global oceans by investigating the sensitivity of a cloud variable relative to
AIX defined as ∆log10(cloud-variable)/∆log10(AIX). This sensitivity is actually the slope
of the linear regression of a cloud variable relative to AIX [52]. The above correlation
analysis suggests the three microphysical cloud variables (CPER, IWP, COD), especially
CPER and IWP, are more sensitive to an AIX change than the three macrophysical cloud
variables (CCF, CTH, CTT). Among the three macrophysical cloud variables, CCF has
some sensitivity to an AIX change but CTH and CT show only weak sensitivity. Thus, we
performed linear regression calculations for log10(cloud-variable) relative to log10(AIX)
for CPER, IWP, COD, and CCF on a 2.5◦ × 2.5◦ spatial grid over the global oceans using
their long-term averaged monthly mean values in 0.1◦ × 0.1◦ spatial resolution. Using
the logarithm considers the nonlinearity aspect of the sensitivity computation based on
the linear regression, and the results can be used effectively to diagnose and capture the
signature of the aerosol effect on clouds [52,53].

4. Results
4.1. Global Long-Term Mean Distributions

Figure 1 shows the distribution of long-term (1982–2019) averaged monthly mean
AIX over the global oceans, which is overlaid with long-term averaged horizontal wind
vectors on 850 mb pressure level. It is seen that AIX values over coastal oceanic areas
are generally higher than those over remote oceans due to abundant continental aerosols
flowing out from their source regions over land. For example, these continental aerosols
can be dust over the west coast of North Africa, biomass burning over the west coast of
Central/South Africa, industrial pollution and dust particles over the Arabian Sea, the Bay
of Bengal, and the coastal oceans of China, or industrial pollution and biomass burning
over the Indonesia Seas. Many of these aerosols are hygroscopic and may be lifted into the
cloud layer, especially in the development stage of DCCs, to become activated CCNs and
INPs and modify cloud microphysical and macrophysical properties. AIX values are the
highest in the tropical oceans, moderate over the oceans in the northern middle latitudes,
and lowest over the southern oceans (see also Figure 3b). Thus, it is reasonable to speculate
that the aerosol effect on DCCs could be more active in the northern hemisphere (NH) than
in the southern hemisphere (SH) and most active in the tropics, which will be confirmed in
our subsequent analyses.
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Figure 1. Distribution of long-term (1982–2019) averaged monthly mean AIX over the global
oceans, which is overlaid with long-term averaged horizontal wind vectors (m/s) on the 850 mb
pressure level.

Figure 2 shows the distributions of six cloud variables (CCF, CPER, COD, IWP, CTH,
and CTT) of DCCs for their long-term averaged monthly mean values over the global
oceans. Total DCC sample numbers used to compute the long-term averaged monthly
mean values for the six cloud variables are displayed in Figure 3a, which can be considered
as the frequence of DCC occurance. We can see relatively high CCF values are mainly
located over the three zonal latitude belts (Figure 2a). The first is 30◦ N–60◦ N of northern
middle latitudes (named NML), the second is 30◦ S–60◦ S of southern middle latitudes
(SML), and the last is 15◦ S–15◦ N of tropical latitudes (TRL). CCF shows the highest value
over the tropical convergence zones due to strong convection. There are also relatively high
CCF values in the NML storm corridors over the Northern Pacific Ocean and the Northern
Atlantic Ocean, where mesoscale convective cloud systems (MCS) are active. CCF values
in the SML storm corridors over the Southern Indian Ocean and the Southern Atlantic
Ocean are also somewhat high due to MCS convection. CCF values are relatively low
in the subtropical latitudes of both hemispheres where atmospheric subsidence motions
are prevailing. The CCF of NML is evidently higher than that of SML while CCF is the
highest in TRL. This might be related to some extent to the relatively high aerosol loading
in the NH compared to the SH and the highest aerosol loading over TRL in addition to
the convections, which will be furtherly investigated in Section 4.4 below. The latitudinal
distribution of AIX and CCF can be seen more clearly in Figure 3b, which shows the zonally
averaged climatology of AIX and CCF, respectively.

Similar to CCF, three zonal latitude belts with relatively high CPER and IWP but
relatively low COD are also observed for DCCs and their NH and SH differences are
less distinct than CCF. COD is relatively high but CPER and IWP are relatively low in
the subsidence regions over the subtropical latitudes of both hemispheres, except in the
middle subtropical Pacific Ocean (named MSPO), where CPER and IWP become somewhat
high. It is interesting to note (see Figure 2a–d) that there is a tongue extending from 110◦ E
to 140◦ E between 10◦ N and 30◦ N with relatively low CPER and IWP but somewhat
high CCF and COD over the coastal oceans of the southeast China (SEC), which is most
prominent in winter season (not shown here). This might be the signature of aerosol
microphysical invigoration effect (aerosols invigorate convection through ice processes)
since offshore anthropogenic aerosol loading is prominent in this region [54–56], especially
in the winter season [26,57], due to the transport of air pollution from mainland China. It
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is expected that precipitation should be enhanced accordingly in the same region due to
invigorated convection, which was indeed observed in TRMM satellite rainfall measure-
ments see [58,59], especially in the winter season (DJF). More analysis of AIE on DCCs in
SEC will be performed in the following subsections.
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The highest CTH and lowest CTT appear over the tropics and gradually decrease
and increase, respectively, toward higher latitudes. This nearly zonal distribution of
CTH and CTT is likely more related to atmospheric circulation and DCC dynamical and
thermodynamic processes than to aerosol and cloud microphysical processes. In other
words, the signature of aerosol effects on DCCs contained in CTH and CTT is likely
obscured by DCC dynamical and thermodynamic processes and would subsequently be
harder to observe in long-term averages (or climatology).

Figure 4 plots the distribution of long-term averaged monthly mean CAPE, ω850,
RHclm, and RH850, respectively, over the global oceans. We can see the convective available
potential energy (Figure 4a) is nearly in a zonal distribution with the highest values in
the tropics, especially in the tropical convergence zones, and dissipates rapidly toward
middle and high latitudes. Accordingly, upward motion (negativeω in Figure 4b) is most
prominent in the tropical convergence zones and downward motion is mainly located in
the subsidence areas over the subtropical latitudes of both hemispheres, especially over
the west coastal oceans of the major continents. Weak upward motion is a general feature
beyond 30◦ N and 45◦ S, respectively, except relatively high positive values (downward
motion) in a narrow tongue region over the northeastern costal oceans of China and
USA, and the broad areas of East Siberian Sea, Chukchi Sea, and Beaufort Sea in polar
latitudes. The highest value of RHclm is in the tropics, especially in the tropical convergence
zones, and decreases gradually toward high latitudes. RH850 shows similar features in the
tropics as RHclm, except that the belt with the highest value is more concentrated in the
convergence zones. Relatively low values appear in the subsidence areas of subtropical
altitudes in both hemispheres (Figure 4d), especially over the west coastal oceans of the
major continents. RH850 values are relatively high in the polar latitudes of both hemispheres,
which is opposite to that of RHclm. The spatial distribution of RH850 seems more related to
the three meridional atmospheric circulations than that of RHclm. The spatial features of
these important aerosol, cloud, and meteorological fields will help us analyze the aerosol
effect on DCCs in the subsequent study.
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4.2. Statistical Features

Figure 5 shows statistical relationships of AIX with CCF, IWP, CPER, CTH, CTT, and
COD for their long-term averaged values in the three latitudinal regions (NML, TRL, and
SML) where DCCs appear more frequently than other latitudinal locations (see Figure 3a).
The six cloud variables are binned according to AIX with 0.01 incremental interval and the
mean values for individual bins are computed and displayed for the three regions. The
numbers of the sample size for individual bins are displayed later in Figure 6f. In the TRL,
large variations of the six cloud variables are mainly observed between 0.1 and 0.4 of AIX
and they stay relatively stable outside of this range, which suggests this is the range of AIX
values where the signature of aerosol effects on DCCs might manifest. Most of the sample
numbers also fall in this range (named sensitive regime hereafter). At the same time, the
variations may be also associated with the covariance of meteorological conditions. For
example, the sudden drops (climbs) of CCF, CPER, IWP, and CTH (CTT and COD) at about
0.12 and 0.34 of AIX are associated clearly with low values of CAPE, RHclm, and RH850,
high value of VSHW, and downward motion (or positiveω850) (see Figure 6). Similar drops
are also noticed for RHclm, RH850, VSHW, and ω850, but not for CAPE at AIX~0.34. The
variations of RHclm and RH850 with AIX increase are similar, which implies that convection
is sufficiently strong in the atmospheric column that moisture is brought rapidly from
ocean surface to the cloud layer. Thus, AIE signatures contained within the averaged six
cloud variables between 0.1 and 0.4 of AIX in TRL may be masked by the covariance of
meteorological conditions controlled by the atmospheric dynamical and thermodynamic
processes of DCCs. Therefore, there is a need to separate the AIE and the covariance of
meteorological conditions, which will be addressed in the subsequent correlation analysis.
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Figure 5. Statistic relationships of AIX with (a) CCF, (b) IWP, (c) CPER, (d) CTH, (e) CTT, and (f) COD
for their long-term averaged values in the three latitudinal regions (NML, TRL, and SML).

For the NML, large variations of the six cloud variables are mainly observed between
0.1 and 0.32 of AIX and most of the sample numbers also fall in this regime. Thus, the range
of AIX from 0.1 to 0.32 is the potential regime (or sensitive regime) where the aerosol effect
on DCCs might manifest. In this regime, CCF, CPER, IWP, and CTH are relatively high,
CTT is relativly low, and COD is relatively flat, in contrast generally to the TRL. A relativly
high value is also observed in this regime for CAPE, RH850, and VSHW but not forω850 and
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RHclm. Actually, different variations of RHclm and RH850, nearly zero vertical motion on
850 mb pressure level (ω850~0.0), and relatively strong wind shear in the sensitive regime
suggest the convection in the NML is not as vigorous as in the TRL. The relatively high
values of CCF, CPER, IWP, and CTH and relatively low values of CTT and COD may also
contain an AIE signature in the sensitive regime. In other word, the signal of aerosol effects
on DCCs may manifest in the long-term mean of the cloud variables in the NML, which
will be further explored below. For the SML, there is a small increasing tendency in CCF,
CPER, IWP, and CTH along with a small decreasing tendency in CTT and COD when AIX
increases from 0.05 to 0.3 (sensitive regime). Relatively large fluctuations are noticed below
0.05 and above 0.3 of AIX (especially for AIX > 0.4), which is actually due to small sample
size (see Figure 6f). The variations of CAPE, RH850, RHclm, andω850 in the sensitive regime
are similar to that in the NML (except the wind shear) but with much reduced magnitude.
Different variations of RHclm and RH850 are also observed as in NML. Persistent upward
motion is observed only at the beginning of the regime and turning to downward motion
with evident fluctuation thereafter. Large positive and negative oscillations ofω850 are clear
seen for AIX > 0.4. The nearly steady fluctuations of cloud and meteorological variables for
the AIX larger than 0.4 are actually due to small sample size (see Figure 6f). Thus, similar
to NML, the signature of aerosol effects on DCCs may manifest in the long-term mean of
the cloud variables in the sensitive regime of SML but with much reduced signal due to
obscuration by the covariance of meteorological conditions (see a further study below).
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4.3. Correlation Analysis Result

Using the above Equation (2), we computed the correlation of the six cloud variables
with AIX and the fourteen meteorological variables (CAPE, PW, RHclm, RH850, RH2m, T850,
T2m, U850, U10m, V850, V10m, ω850, ωsig995, VSHW) that have a potential influence on DCCs
in the five regions listed in Table 1. As an example, Tables 2 and 3 list the individual linear
correlation coefficients (Ci, i = 1, 2, . . . , 15) for AIX and the fourteen meteorological variables
and the total multiple linear correlation coefficient (Ct) obtained from the multiple-variables
linear regression for the cloud microphysical variables CPER and IWP, respectively, in the
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five regions. These correlation coefficients are normalized to 100 and expressed in the unit
of percentage (%). The correlation coefficients in Tables 2 and 3 for CPEF and IWP are
also presented in Figure 7 along with the correlation coefficients for the other four cloud
variables (COD, CCF, CTH, and CTT).

Table 2. The individual correlation coefficients (Ci, i = 1, 2, . . . , 15) from the MVLR analysis for
the cloud microphysical variable CPER in the five regions of Table 1. The correlation coefficients
are normalized to 100 and expressed in the unit of percentage (%). The highest negative and
positive correlation coefficients among the fifteen individual correlation coefficients for AIX and
the fourteen meteorological variables are highlighted in bold font for each region. The multiple
linear correlation coefficient (Ct) represents the total correlation of CPER with AIX and the fourteen
meteorological variables.

Number Variable (Ci)
Linear Correlation Coefficients (%) for Individual Region

MSPO NWPO SEC SIO TWPO

1 AIX (C1) 72.47 61.64 49.70 7.13 68.67

2 CAPE (C2) 10.58 −18.80 −11.56 28.43 −8.71

3 PW (C3) 38.14 40.41 33.62 19.58 43.12

4 RHclm (C4) 52.57 32.47 41.84 33.12 55.93

5 RH850 (C5) 53.20 53.65 27.06 24.44 60.92

6 RH2m (C6) 6.45 −27.44 15.74 15.52 23.97

7 T850 (C7) 30.60 3.23 0.36 −24.65 29.66

8 T2m (C8) 36.94 31.54 7.52 −25.44 22.91

9 U850 (C9) 1.50 13.21 9.18 −27.01 18.95

10 U10m (C10) 0.69 12.94 10.76 −11.02 20.61

11 V850 (C11) −15.75 −8.94 −11.09 −11.19 −7.52

12 V10m (C12) −16.17 −10.07 −16.02 −24.18 10.70

13 ω850 (C13) −23.68 −25.76 −44.20 −39.93 −46.04

14 ωsig995 (C14) −5.77 −57.07 20.62 −51.16 −33.19

15 VSHW (C15) −14.72 3.00 −23.66 5.66 −31.79

Multiple Linear Correlation
Coefficient (%) (Ct)

84.74 89.98 86.08 80.61 86.63

For the microphysical cloud variable CPER and IWP, their total multiple linear correla-
tion (Ct) is generally above 80% in the five regions. AIX has the highest positive correlation
with CPER and IWP among the fifteen variables, except in SIO. This suggests the aerosol
effect on CPER and IWP of DCCs is likely to manifest in the long-term averaged satellite
observations of clouds, especially in MSPO, TWPO, and NWPO where the correlation
coefficient with AIX (C1) is above 60%. As a result, CPER and IWP may be increased (de-
creased) due to an increase (decrease) of aerosol loading. This also supports our previous
speculation that relatively high (or low) CPER and IWP in Figure 2b,d in MSPO (or SEC)
may be a manifestation of AIE. There is also a relatively high correlation (C4 or C5) with
the relative humidity (RHclm or RH850) so that they are also important to some extent for
the change of CPER and IWP but insufficient to conceal the aerosol effect. Vertical motion
in the cloud base (ω850) or subcloud layer (ωsig995) shows the highest negative correlation
(C13 or C14), except in SIO, which suggests the vertical motion may also contribute some-
what to the change of CPER and IWP in MSPO, NWPO, SEC, and TWPO. The highest
negative correlation of IWP with AIX and low positive correlation of CPEF with AIX in
SIO suggest AIE signature may manifest in the change of IWP rather than in that of CPEF
in SIO, where aerosols over the remote southern oceans are relatively less abundant (see
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Figure 1). The correlation of cloud microphysical variable COD with AIX is not prominent
and comparable to the correlation of COD with the relative humidity or the vertical motion
(see Figure 7c), only becomes somewhat prominent in MSPO and TWPO but the absolute
value of the correlation coefficient C1 is still less than 50%. Thus, AIE signatures contained
in COD variations may concealed by the covariance of meteorological conditions.

Table 3. Same as Table 2 but for the cloud microphysical variable IWP.

Number Variable (Ci)
Linear Correlation Coefficients (%) for Individual Region

MSPO NWPO SEC SIO TWPO

1 AIX (C1) 76.70 65.65 56.25 −48.26 75.25

2 CAPE (C2) 19.11 −8.19 −7.31 −7.96 3.38

3 PW (C3) 49.77 51.03 32.68 −28.57 52.75

4 RHclm (C4) 59.07 34.39 35.87 −16.31 62.17

5 RH850 (C5) 58.84 59.55 22.91 −9.49 66.47

6 RH2m (C6) 16.94 −27.00 12.61 −35.80 31.56

7 T850 (C7) 44.47 16.89 9.77 −15.48 42.63

8 T2m (C8) 49.44 45.94 14.91 2.86 36.36

9 U850 (C9) −0.68 11.65 12.70 18.82 25.77

10 U10m (C10) −1.94 13.09 16.45 39.42 27.71

11 V850 (C11) −18.25 −7.06 −16.21 16.15 −11.39

12 V10m (C12) −18.30 −6.99 −15.49 7.00 10.71

13 ω850 (C13) −31.82 −39.11 −39.63 −14.31 −50.09

14 ωsig995 (C14) −16.69 −46.14 18.74 −34.27 −32.04

15 VSHW (C15) −16.31 11.04 −13.74 −19.53 −34.13

Multiple Linear Correlation
Coefficient (%) (Ct)

86.41 86.20 82.36 91.39 86.75
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Figure 7. Fifteen normalized individual correlation coefficients (C1(AIX), C2(CAPE), C3(PW),
C4(RHclm), C5(RH850), C6(RH2m), C7(T850), C8(T2m), C9(U850), C10(U10m), C11(V850), C12(V10m),
C13(ω850), C14(ωsig995), C15(VSHW)) and the total correlation coefficient (Ct) from the MVLR analysis
for the six cloud variables (a) CPER, (b) IWP, (c) COD, (d) CCF, (e) CTH, and (f) CTT in the five
regions (MSPO, NWPO, SEC, SIO, and TWPO) of Table 1.
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For the macrophysical cloud variable CCF (Figure 7d), its correlation with AIX is
small, except in SIO where the negative correlation is close to 70% and is the highest in the
absolute value among the fifteen correlation coefficients. Therefore, DCC suppression or
invigoration due to the change of aerosol loading is likely to manifest in CCF of SIO but
not in the other four regions, where the covariance of meteorological conditions may easily
conceal the aerosol effect on CCF. For the macrophysical cloud variable CTH (Figure 7e),
its correlation with AIX is not prominent, except in TWPO where the positive correlation is
about 56% and is the highest in the absolute value among the fifteen correlation coefficients.
Thus, DCC suppression or invigoration may manifest in CTH in TWPO but hardly to
manifest in the other four regions, where the covariance of meteorological conditions may
play a more important role than the aerosol effect on CTH. For the macrophysical cloud
variable CTT (Figure 7f), its correlation with AIX (C1) is inconspicuous compared to some
of the meteorological variables, such as C15 (VSHW) for MSPO, C14 (ωsig995) for NWPO, C8
(T2m) for SEC, C7 (T850) for SIO, and C11 (V850) for TWPO, so that the signature of aerosol
effect on CTT can be easily obscured by the covariance of meteorological conditions and
becomes almost impossible to manifest.

4.4. AIE Active Regions

In order to determine the active regions of the aerosol effects on DCCs over the
global oceans, the sensitivity of cloud variables of CPER, COD, IWP, and CCF relative to
AIX defined as ∆log10(cloud-variable)/∆log10(AIX) is displayed over the global oceans in
Figure 8. The confidence level of the positive and negative sensitivity above 95% is also
displayed by the solid and dash contours, respectively. We can see in Figure 8a that there is
generally a high positive sensitivity of CPER to AIX changes in the tropical convergence
zones with strong convections and a high negative sensitivity of CPER to AIX changes
in the subtropical subsidence regions. This suggests an increase of aerosol loading tends
to increase DCC particle size in the tropical convergence zones but decrease it in the
subtropical subsidence regions. It is notable that there is a high positive sensitive region
in the central and eastern subtropical Pacific Ocean and the northwestern Pacific Ocean.
MSPO and NWPO listed in Table 1 fall into these two sensitive regions, respectively. This
sensitivity study and the above correlation analysis suggest the aerosol effects on DCCs
are likely to manifest in the long-term averaged satellite observed CPER of DCCs in these
regions. The sensitivity of IWP to AIX change in Figure 8c is very similar to that of CPER,
which is also consistent with the result of the above correlation analysis. COD also shows
similar sensitivity features as CPER and IWP but with reversed positive and negative
phases and weaker signals (see Figure 8b). Thus, cloud dynamical and thermodynamic
processes may easily obscure the aerosol effect on COD and make it hard to manifest. CCF
also displays similar but somewhat less distinctive features in the sensitivity compared to
CPER and IWP (Figure 8d), which suggests that the aerosol effect on the microphysical
cloud variables may furtherly propagate to CCF. To confirm this speculation, the sensitivity
of CCF to the AIX variation is decomposed into two terms in the following Equation (3):

δ(CCF)
δ
(
log10(AIX)

) =
δ(CCF)

δ
(
log10(CPER)

) ×
δ
(
log10(CPER)

)
δ
(
log10(AIX)

) + residual. (3)

Since CPER is more susceptible to AIX variations than CCF, the first term on the
right-hand side of Equation (3) contains the CCF change mainly due to CPER variation as a
result of aerosol-cloud interaction. The residual term contains the CCF change mainly due
to other effects, such as meteorological covariations, detection errors, etc. The term on the
left-hand side and the first term on the right-hand side (along with its two components) are
shown in Figure 9 for long-term averaged CCF, CPER, and AIX. The regions with significant
positive and negative sensitivities of CCF to AIX variations clearly seen in Figure 9b (left-
hand term of Equation (3)) also show generally a significant positive sensitivity of CCF to
CPER variations in Figure 9c, which confirms the aerosol effect on CPER may propagate
furtherly to CCF. Comparing Figure 9b (left-hand term) and Figure 9d (the first term on
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the right-hand side of Equation (3)), their distribution patterns are very similar except
in some narrow or small regions in yellow/red and blue/purple colors over the tropical
convergence zones in Figure 9b, where the very high positive or negative sensitivities in
Figure 9b disappear in Figure 9d. This suggests, in addition to the aerosol effect, the other
effects (such as meteorological covariations) contained in the residual term may contribute
to the CCF change significantly in these narrow or small tropical regions and conceal the
aerosol effect on CCF. Thus, the macrophyical cloud variable CCF is less susceptible to AIX
changes than the microphysical cloud variables CPER and IWP in the tropical regions with
strong convections, which is consistent with the result of the above correlation analysis.
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5. Discussion

Since the climate of the atmosphere represents the mean state of the atmosphere for a
given relatively long time period, it is important to detect the signatures of aerosol-cloud
interaction in long-term averaged satellite observations. This is our major motivation for
performing the current study of aerosol effects on DCCs with respect to the long-term
mean values of aerosol and cloud variables from satellite observations. Monthly and
annual mean values of aerosol and cloud variables from satellite observations have fewer
spatial gaps over the globe and less noise compared to their instantaneous or short-term
averaged counterparts. Thus, they are more useful for identifying sensitive regimes (or
ranges) of aerosol loading and the active geolocations of aerosol effects on DCCs over
the global oceans from a climatology perspective. Even though our statistical correlation
and regression analyses on long-term averaged aerosol and cloud variables from satellite
observations are useful for detecting some signatures of aerosol effects on DCCs over the
global oceans, it is important to address some possible limitations of our study.

Previous studies, e.g., [12,21] indicated, in addition to aerosol amount and size, aerosol
type is also an important factor in determining the aerosol effects on convective clouds,
especially the either suppression or invigoration of DCCs. There is only one aerosol variable
AIX available in the long-term satellite observation for us to use in the current study so that
the aerosol type effect on DCCs is missing in our analysis, which may partially explain the
weak sensitivity of the aerosol effect on CTH and CTT of DCCs in our analyses. Aerosol
effects on DCCs are much more complex and nonlinear, but our statistical analyses are
mainly based on linear analyzing techniques, even though the logarithmic values of some
cloud variables are used to remedy this deficiency. The relatively low values (<80%) of
multiple linear correlation coefficients for CTH and CTT still remain in some regions
with more intensive DCCs, which is likely due to this deficiency, and nonlinear analyzing
techniques should be explored in the future for further improvement on our analyses.

There are also artifacts or uncertainties in the satellite observations of aerosols and
DCCs (uncertainties caused by the assumptions of aerosol optical properties, scattering
properties of ice crystals, vertical distribution of ice crystals, filtering criteria for selecting
DCCs, etc.). These uncertainties may result in inconsistent features in our statistical corre-
lation analysis for aerosol and cloud variables, such as the incoherent changing tendency
among cloud variables with AIX increasing when sample size is not sufficiently large. Thus,
identifying coherent informative features is critical in the detection of an AIE signature
in our statistical correlation analysis. The observational uncertainties may also smear the
sensitivity of cloud variables relative to the AIX change in the detection of AIE active
regions based on our linear regression analysis. Thus, the significance of sensitivity in our
regression analysis, along with the coherent correlation features between aerosol and cloud
variables in the spatial distributions, are critical for identifying the signature of AIE in our
study. Therefore, our identification of sensitive AIX regimes and active geolocations of
AIE for DCCs is more of a first order quantitative analysis. Further in-depth quantitative
analysis of various processes involved in the AIE for different types of aerosols and different
regions of DCCs and their global climate implications are needed in future studies based on
combined multiple observations (satellite, airborne, and in situ) and model (box, regional,
and global) simulations.

6. Summary and Conclusions

Long-term (1982–2019) satellite observations of aerosols and clouds, along with CFSR
reanalysis, have been used to study the aerosol effects on DCCs over the global oceans
from a climatological perspective. Our focus is on exploring and identifying sensitive
aerosol regimes and active geolocations of the aerosol effects on DCCs by using statistical
techniques, such as correlation analysis and multiple-variables linear regression.

We found the aerosol effects tend to manifest more easily on the long-term mean
values of observed cloud microphysical variables (CPER, IWP, and COD) than on observed
cloud macrophysical variables (CCF, CTH, and CTT). Among the three observed cloud
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microphysical variables, CPER and IWP are more susceptible to the aerosol effect than
COD from a climatological perspective. An increase of aerosol loading tends to increase
DCC particle size and IWP in the tropical convergence zones but decrease them in the
subtropical subsidence regions. An increase of aerosol loading may also decrease COD in
the tropical convergence zones and increase COD in the subtropical subsidence regions, but
it can be easily concealed by cloud dynamical and thermodynamic processes and make it
hard to be detected in COD variation. The aerosol effect on CPER and IWP of DCCs is also
likely to manifest over the northwestern Pacific Ocean and central and eastern subtropical
Pacific Ocean in the long-term averaged satellite observations.

Among the three observed cloud macrophysical variables, CCF is somewhat more
susceptible to the aerosol effect than CTH and CTT since they are mainly influenced by
cloud dynamical and thermodynamic processes. Accordingly, the aerosol effect on the
microphysical cloud variables may further propagate to CCF rather than to CTH and CTT
in the long-term averaged satellite observations. In consideration of large AIE uncertainties
for DCCs in current global climate models, the results of this study based on long-term
averaged satellite observations are valuable for the evaluation and improvement of the
aerosol-cloud interaction in these models.
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Abbreviations

ACI aerosol cloud interaction
AIE aerosol indirect effect
AIX aerosol index
AOT aerosol optical thickness
AVHRR Advanced Very High-Resolution Radiometer
CAPE convective available potential energy
CCN cloud condensation nuclei
CDR(s) climate data record(s)
CFSR climate forecast system reanalysis
COD cloud optical depth
CPER cloud particle effective radius
CTH cloud top height
CTT cloud top temperature
DCC(s) deep convective cloud(s)
EUMETSAT European Organization for the Exploitation of Meteorological Satellites
GAC global area coverage
HIRS High-resolution Infra-Red Sounder
INP(s) ice nucleating particle(s)
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IWP ice water path
NASA National Aeronautics and Space Administration
MCS mesoscale convective cloud systems
MetOp Meteorological Operational Satellites
MODIS Moderate-resolution Imaging Spectroradiometer
MVLR multiple-variables linear regression
NCEI National Centers for Environmental Information
NCEP National Centers for Environmental Prediction
NESDIS National Environmental Satellite, Data, and Information Service
NH northern hemisphere
NML northern middle latitudes
NOAA National Oceanic and Atmospheric Administration
PATMOS-x Pathfinder Atmospheres-Extended
RH relative humidity
SH southern hemisphere
SML southern middle latitudes
STAR Center for Satellite Applications and Research
TRL tropical latitude
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